Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain Commun ; 6(2): fcae114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650831

RESUMO

The sortilin-related receptor 1 (SORL1) gene, encoding the cellular endosomal sorting-related receptor with A-type repeats (SORLA), is now established as a causal gene for Alzheimer's disease. As the latest addition to the list of causal genes, the pathophysiological effects and biomarker potential of SORL1 variants remain relatively undiscovered. Metabolic dysfunction is, however, well described in patients with Alzheimer's disease and is used as an imaging biomarker in clinical diagnosis settings. To understand the metabolic consequences of loss-of-function SORL1 mutations, we applied two metabolic MRI technologies, sodium (23Na) MRI and MRI with hyperpolarized [1-13C]pyruvate, in minipigs and mice with compromised expression of SORL1. At the age analysed here, both animal models display no conventional imaging evidence of neurodegeneration but show biochemical signs of elevated amyloid production, thus representing the early preclinical disease. With hyperpolarized MRI, the exchange from [1-13C]pyruvate to [1-13C]lactate and 13C-bicarbonate was decreased by 32 and 23%, respectively, in the cerebrum of SORL1-haploinsufficient minipigs. A robust 11% decrease in the sodium content was observed with 23Na-MRI in the same minipigs. Comparably, the brain sodium concentration gradually decreased from control to SORL1 haploinsufficient (-11%) to SORL1 knockout mice (-23%), suggesting a gene dose dependence in the metabolic dysfunction. The present study highlights that metabolic MRI technologies are sensitive to the functional, metabolic consequences of Alzheimer's disease and Alzheimer's disease-linked genotypes. Further, the study suggests a potential avenue of research into the mechanisms of metabolic alterations by SORL1 mutations and their potential role in neurodegeneration.

2.
Eur Radiol Exp ; 8(1): 44, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472611

RESUMO

BACKGROUND: Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI. METHODS: A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The participants consumed 75 g of [6,6'-2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glutamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was performed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of variation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory analyses, the variability effects of region, processing, and normalization were estimated. RESULTS: Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject CoVs were -20%. CONCLUSIONS: DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05402566 , registered the 25th of May 2022. RELEVANCE STATEMENT: Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical field strengths, enabling the study of shifts in tumor metabolism associated with treatment response. KEY POINTS: • Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability.  • The repeatability of deuterium metabolic imaging is on par with FDG-PET.  • The study of deuterium metabolic imaging in clinical populations is feasible.


Assuntos
Glucose , Glutamina , Humanos , Masculino , Deutério , Voluntários Saudáveis , Glucose/metabolismo , Glutamatos , Lactatos
3.
Magn Reson Med ; 91(6): 2204-2228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441968

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Coração , Fígado/diagnóstico por imagem , Fígado/metabolismo , Isótopos de Carbono/metabolismo
4.
NMR Biomed ; 37(5): e5110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317333

RESUMO

Early biomarkers of cerebral damage are essential for accurate prognosis, timely intervention, and evaluation of new treatment modalities in newborn infants with hypoxia and ischemia at birth. Hyperpolarized 13C magnetic resonance imaging (MRI) is a novel method with which to quantify metabolism in vivo with unprecedented sensitivity. We aimed to investigate the applicability of hyperpolarized 13C MRI in a newborn piglet model and whether this method may identify early changes in cerebral metabolism after a standardized hypoxic-ischemic (HI) insult. Six piglets were anesthetized and subjected to a standardized HI insult. Imaging was performed prior to and 2 h after the insult on a 3-T MR scanner. For 13C studies, [1-13C]pyruvate was hyperpolarized in a commercial polarizer. Following intravenous injection, images were acquired using metabolic-specific imaging. HI resulted in a metabolic shift with a decrease in pyruvate to bicarbonate metabolism and an increase in pyruvate to lactate metabolism (lactate/bicarbonate ratio, mean [SD]; 2.28 [0.36] vs. 3.96 [0.91]). This is the first study to show that hyperpolarized 13C MRI can be used in newborn piglets and applied to evaluate early changes in cerebral metabolism after an HI insult.


Assuntos
Hipóxia-Isquemia Encefálica , Recém-Nascido , Lactente , Animais , Humanos , Suínos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Bicarbonatos , Imageamento por Ressonância Magnética/métodos , Modelos Animais , Hipóxia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
5.
Magn Reson Med ; 90(6): 2233-2241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665726

RESUMO

PURPOSE: To investigate high-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring cerebral perfusion in the human brain. METHODS: HP [1-13 C]pyruvate MRI was acquired in five healthy volunteers with a multi-resolution EPI sequence with 7.5 × 7.5 mm2 resolution for pyruvate. Perfusion parameters were calculated from pyruvate MRI using block-circulant singular value decomposition and compared to relative cerebral blood flow calculated from arterial spin labeling (ASL). To examine regional perfusion patterns, correlations between pyruvate and ASL perfusion were performed for whole brain, gray matter, and white matter voxels. RESULTS: High resolution 7.5 × 7.5 mm2 pyruvate images were used to obtain relative cerebral blood flow (rCBF) values that were significantly positively correlated with ASL rCBF values (r = 0.48, 0.20, 0.28 for whole brain, gray matter, and white matter voxels respectively). Whole brain voxels exhibited the highest correlation between pyruvate and ASL perfusion, and there were distinct regional patterns of relatively high ASL and low pyruvate normalized rCBF found across subjects. CONCLUSION: Acquiring HP 13 C pyruvate metabolic images at higher resolution allows for finer spatial delineation of brain structures and can be used to obtain cerebral perfusion parameters. Pyruvate perfusion parameters were positively correlated to proton ASL perfusion values, indicating a relationship between the two perfusion measures. This HP 13 C study demonstrated that hyperpolarized pyruvate MRI can assess cerebral metabolism and perfusion within the same study.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Perfusão , Marcadores de Spin , Circulação Cerebrovascular
6.
J Magn Reson Imaging ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656067

RESUMO

BACKGROUND: MRI can provide information on kidney structure, perfusion, and oxygenation. Furthermore, it allows for the assessment of kidney sodium concentrations and handling, allowing multiparametric evaluation of kidney physiology. Multiparametric MRI is promising for establishing prognosis and monitoring treatment responses in kidney diseases, but its intraindividual variation during the day is unresolved. PURPOSE: To investigate the variation in multiparametric MRI measurements from the morning to the evening. STUDY TYPE: Prospective. POPULATION: Ten healthy volunteers, aged 29 ± 5 without history of kidney disease. FIELD STRENGTH/SEQUENCE: 3 T/T1 mapping, blood-oxygen level dependent imaging, arterial spin labeling perfusion imaging, diffusion weighted imaging, and sodium imaging. ASSESSMENT: A multiparametric MRI protocol, yielding T1, R2*, ADC, renal blood flow and renal sodium levels, was acquired in the morning, noon, and evening. The participants were fasting prior to the first examination. Urine biochemical analyses were performed to complement MRI data. The cortex and medulla were analyzed separately in a semi-automatic fashion, and gradients of total sodium concentration (TSC) and R2 * gradients were calculated from outer cortex to inner medulla. STATISTICAL TEST: Analyses of variance and mixed-effects models to estimate differences from time of day. Coefficients of variation to assess variability within and between participants. A P-value <0.05 was considered statistically significant. RESULTS: The coefficients of variation varied from 5% to 18% for proton-based parametric sequences, while it was 38% for TSC over a day. DATA CONCLUSION: Multiparametric MRI is stable over the day. The coefficients of variation over a day were lower for proton multiparametric MRI, but higher for sodium MRI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

7.
ArXiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37731660

RESUMO

MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.

8.
Magn Reson Med ; 90(6): 2539-2556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526128

RESUMO

PURPOSE: X-nuclei (also called non-proton MRI) MRI and spectroscopy are limited by the intrinsic low SNR as compared to conventional proton imaging. Clinical translation of x-nuclei examination warrants the need of a robust and versatile tool improving image quality for diagnostic use. In this work, we compare a novel denoising method with fewer inputs to the current state-of-the-art denoising method. METHODS: Denoising approaches were compared on human acquisitions of sodium (23 Na) brain, deuterium (2 H) brain, carbon (13 C) heart and brain, and simulated dynamic hyperpolarized 13 C brain scans, with and without additional noise. The current state-of-the-art denoising method Global-local higher order singular value decomposition (GL-HOSVD) was compared to the few-input method tensor Marchenko-Pastur principal component analysis (tMPPCA). Noise-removal was quantified by residual distributions, and statistical analyses evaluated the differences in mean-square-error and Bland-Altman analysis to quantify agreement between original and denoised results of noise-added data. RESULTS: GL-HOSVD and tMPPCA showed similar performance for the variety of x-nuclei data analyzed in this work, with tMPPCA removing ˜5% more noise on average over GL-HOSVD. The mean ratio between noise-added and denoising reproducibility coefficients of the Bland-Altman analysis when compared to the original are also similar for the two methods with 3.09 ± 1.03 and 2.83 ± 0.79 for GL-HOSVD and tMPPCA, respectively. CONCLUSION: The strength of tMPPCA lies in the few-input approach, which generalizes well to different data sources. This makes the use of tMPPCA denoising a robust and versatile tool in x-nuclei imaging improvements and the preferred denoising method.

9.
Front Pediatr ; 11: 1167396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325341

RESUMO

Introduction: Hypoxic ischemic encephalopathy (HIE) after a perinatal insult is a dynamic process that evolves over time. Therapeutic hypothermia (TH) is standard treatment for severe to moderate HIE. There is a lack of evidence on the temporal change and interrelation of the underlying mechanisms that constitute HIE under normal and hypothermic conditions. We aimed to describe early changes in intracerebral metabolism after a hypoxic-ischemic insult in piglets treated with and without TH and in controls. Methods: Three devices were installed into the left hemisphere of 24 piglets: a probe measuring intracranial pressure, a probe measuring blood flow and oxygen tension, and a microdialysis catheter measuring lactate, glucose, glycerol, and pyruvate. After a standardized hypoxic ischemic insult, the piglets were randomized to either TH or normothermia. Results: Glycerol, a marker of cell lysis, increased immediately after the insult in both groups. There was a secondary increase in glycerol in normothermic piglets but not in piglets treated with TH. Intracerebral pressure, blood flow, oxygen tension, and extracellular lactate remained stable during the secondary increase in glycerol. Conclusion: This exploratory study depicted the development of the pathophysiological mechanisms in the hours following a perinatal hypoxic-ischemic insult with and without TH and controls.

10.
Magn Reson Med ; 90(2): 664-672, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37094025

RESUMO

PURPOSE: Hyperpolarized [1-13 C]pyruvate MRI is an emerging clinical tool for metabolic imaging. It has the potential for absolute quantitative metabolic imaging. However, the method itself is not quantitative, limiting comparison of images across both time and between individuals. Here, we propose a simple signal normalization to the whole-body oxidative metabolism to overcome this limitation. THEORY AND METHODS: A simple extension of the model-free ratiometric analysis of hyperpolarized [1-13 C]pyruvate MRI is presented, using the expired 13 CO2 in breath for normalization. The proposed framework was investigated in two porcine cohorts (N = 11) subjected to local renal hypoperfusion defects and subsequent [1-13 C]pyruvate MRI. A breath sample was taken before the [1-13 C]pyruvate injection and 5 min after. The raw MR signal from both the healthy and intervened kidney in the two cohorts was normalized using the 13 CO2 in the expired air. RESULTS: 13 CO2 content in the expired air was significantly different between the two cohorts. Normalization to this reduced the coefficients of variance in the aerobic metabolic sensitive pathways by 25% for the alanine/pyruvate ratio, and numerical changes were observed in the bicarbonate/pyruvate ratio. The lactate/pyruvate ratio was largely unaltered (<2%). CONCLUSION: Our results indicate that normalizing the hyperpolarized 13 C-signal ratios by the 13 CO2 content in expired air can reduce variation as well as improve specificity of the method by normalizing the metabolic readout to the overall metabolic status of the individual. The method is a simple and cheap extension to the hyperpolarized 13 C exam.


Assuntos
Dióxido de Carbono , Imageamento por Ressonância Magnética , Animais , Suínos , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Isótopos de Carbono/metabolismo
11.
Magn Reson Med ; 90(2): 655-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971340

RESUMO

PURPOSE: Ischemic injury in the kidney is a common pathophysiological event associated with both acute kidney injury and chronic kidney disease; however, regional ischemia-reperfusion as seen in thromboembolic renal disease is often undetectable and thus subclinical. Here, we assessed the metabolic alterations following subclinical focal ischemia-reperfusion injury with hyperpolarized [1-13 C]pyruvate MRI in a porcine model. METHODS: Five pigs were subjected to 60 min of focal kidney ischemia. After 90 min of reperfusion, a multiparametric proton MRI protocol was performed on a clinical 3T scanner system. Metabolism was evaluated using 13 C MRI following infusion of hyperpolarized [1-13 C]pyruvate. Ratios of pyruvate to its detectable metabolites (lactate, bicarbonate, and alanine) were used to quantify metabolism. RESULTS: The focal ischemia-reperfusion injury resulted in injured areas with a mean size of 0.971 cm3 (±1.019). Compared with the contralateral kidney, the injured areas demonstrated restricted diffusion (1269 ± 83.59 × 10-6 mm2 /s vs. 1530 ± 52.73 × 10-6 mm2 /s; p = 0.006) and decreased perfusion (158.8 ± 29.4 mL/100 mL/min vs. 274 ± 63.1 mL/100 mL/min; p = 0.014). In the metabolic assessment, the injured areas displayed increased lactate/pyruvate ratios compared with the entire ipsilateral and the contralateral kidney (0.35 ± 0.13 vs. 0.27 ± 0.1 vs. 0.25 ± 0.1; p = 0.0086). Alanine/pyruvate ratio was unaltered, and we were unable to quantify bicarbonate due to low signal. CONCLUSION: MRI with hyperpolarized [1-13 C]pyruvate in a clinical setup is capable of detecting the acute, subtle, focal metabolic changes following ischemia. This may prove to be a valuable future addition to the renal MRI suite.


Assuntos
Ácido Pirúvico , Traumatismo por Reperfusão , Animais , Suínos , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Traumatismo por Reperfusão/diagnóstico por imagem , Ácido Láctico/metabolismo , Alanina/metabolismo
12.
Sci Rep ; 13(1): 1613, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709217

RESUMO

Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Ratos , Suínos , Animais , Taxa de Depuração Metabólica , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/metabolismo , Cabeça
13.
NMR Biomed ; 36(2): e4838, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36151711

RESUMO

Chronic kidney disease (CKD) is common and has huge implications for health and mortality. It is aggravated by intrarenal fibrosis, but the assessment of fibrosis is limited to kidney biopsies, which carry a risk of complications and sampling errors. This calls for a noninvasive modality for diagnosing and staging intrarenal fibrosis. The current, exploratory study evaluates a multiparametric MRI protocol including sodium imaging (23 Na-MRI) to determine the opportunities within this modality to assess kidney injury as a surrogate endpoint of fibrosis. The study includes 43 pigs exposed to ischemia-reperfusion injury (IRI) or unilateral ureteral obstruction (UUO), or serving as healthy controls. Fibrosis was determined using gene expression analysis of collagen. The medulla/cortex ratio of 23 Na-MRI decreased in the injured kidney in the IRI pigs, but not in the UUO pigs (p = 0.0180, p = 0.0754). To assess the combination of MRI parameters in estimating fibrosis, we created a linear regression model consisting of the cortical apparent diffusion coefficient, ΔR2*, ΔT1, the 23 Na medulla/cortex ratio, and plasma creatinine (R2  = 0.8009, p = 0.0117). The 23 Na medulla/cortex ratio only slightly improved the fibrosis prediction model, leaving 23 Na-MRI in an ambiguous place for evaluation of intrarenal fibrosis. Use of multiparametric MRI in combination with plasma creatinine shows potential for the estimation of fibrosis in human kidney disease, but more translational and clinical work is warranted before MRI can contribute to earlier diagnosis and evaluation of treatment for acute kidney injury and CKD.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Humanos , Animais , Suínos , Prótons , Creatinina , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Obstrução Ureteral/diagnóstico por imagem , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Fibrose , Modelos Animais de Doenças
14.
Cell Rep Med ; 3(9): 100740, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099918

RESUMO

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of ß-amyloid (Aß) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Biomarcadores , Haploinsuficiência/genética , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Suínos , Porco Miniatura/metabolismo
15.
J Cardiovasc Magn Reson ; 24(1): 34, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658896

RESUMO

BACKGROUND: Hyperpolarized (HP) [1-13C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize the uptake and intracellular conversion of [1-13C]pyruvate to either [1-13C]lactate or 13C-bicarbonate depending on the prevailing metabolic state. The aim of the present study was to combine an adenosine stress test with HP [1-13C]pyruvate CMR to detect cardiac metabolism in the healthy human heart at rest and during moderate stress. METHODS: A prospective descriptive study was performed between October 2019 and August 2020. Healthy human subjects underwent cine CMR and HP [1-13C]pyruvate CMR at rest and during adenosine stress. HP [1-13C]pyruvate CMR images were acquired at the mid-left-ventricle (LV) level. Semi-quantitative assessment of first-pass myocardial [1-13C]pyruvate perfusion and metabolism were assessed. Paired t-tests were used to compare mean values at rest and during stress. RESULTS: Six healthy subjects (two female), age 29 ± 7 years were studied and no adverse reactions occurred. Myocardial [1-13C]pyruvate perfusion was significantly increased during stress with a reduction in time-to-peak from 6.2 ± 2.8 to 2.7 ± 1.3 s, p = 0.02. This higher perfusion was accompanied by an overall increased myocardial uptake and metabolism. The conversion rate constant (kPL) for lactate increased from 11 ± 9 *10-3 to 20 ± 10 * 10-3 s-1, p = 0.04. The pyruvate oxidation rate (kPB) increased from 4 ± 4 *10-3 to 12 ± 7 *10-3 s-1, p = 0.008. This increase in carbohydrate metabolism was positively correlated with heart rate (R2 = 0.44, p = 0.02). CONCLUSIONS: Adenosine stress testing combined with HP [1-13C]pyruvate CMR is feasible and well-tolerated in healthy subjects. We observed an increased pyruvate oxidation during cardiac stress. The present study is an important step in the translation of HP [1-13C]pyruvate CMR into clinical cardiac imaging. Trial registration EUDRACT, 2018-003533-15. Registered 4th of December 2018, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2018-003533-15.


Assuntos
Imagem de Perfusão do Miocárdio , Ácido Pirúvico , Adenosina , Adulto , Teste de Esforço , Feminino , Humanos , Lactatos , Imageamento por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética , Masculino , Imagem de Perfusão do Miocárdio/métodos , Oxirredutases , Valor Preditivo dos Testes , Estudos Prospectivos , Adulto Jovem
16.
Tomography ; 8(3): 1570-1577, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736877

RESUMO

The cause of amyotrophic lateral sclerosis (ALS) is still unknown, and consequently, early diagnosis of the disease can be difficult and effective treatment is lacking. The pathology of ALS seems to involve specific disturbances in carbohydrate metabolism, which may be diagnostic and therapeutic targets. Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate is emerging as a technology for the evaluation of pathway-specific changes in the brain's metabolism. By imaging pyruvate and the lactate and bicarbonate it is metabolized into, the technology is sensitive to the metabolic changes of inflammation and mitochondrial dysfunction. In this study, we performed hyperpolarized MRI of a patient with newly diagnosed ALS. We found a lateralized difference in [1-13C]pyruvate-to-[1-13C]lactate exchange with no changes in exchange from [1-13C]pyruvate to 13C-bicarbonate. The 40% increase in [1-13C]pyruvate-to-[1-13C]lactate exchange corresponded with the patient's symptoms and presentation with upper-motor neuron affection and cortical hyperexcitability. The data presented here demonstrate the feasibility of performing hyperpolarized MRI in ALS. They indicate potential in pathway-specific imaging of dysfunctional carbohydrate metabolism in ALS, an enigmatic neurodegenerative disease.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Bicarbonatos , Humanos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo
17.
Magn Reson Med ; 88(3): 1170-1179, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533254

RESUMO

PURPOSE: To investigate the potential effects of [1-13 C]lactate RF saturation pulses on [13 C]bicarbonate detection in hyperpolarized [1-13 C]pyruvate MRI of the brain. METHODS: Thirteen healthy rats underwent MRI with hyperpolarized [1-13 C]pyruvate of either the brain (n = 8) or the kidneys, heart, and liver (n = 5). Dynamic, metabolite-selective imaging was used in a cross-over experiment in which [1-13 C]lactate was excited with either 0° or 90° flip angles. The [13 C]bicarbonate SNR and apparent [1-13 C]pyruvate-to-[13 C]bicarbonate conversion (kPB ) were determined. Furthermore, simulations were performed to identify the SNR optimal flip-angle scheme for detection of [1-13 C]lactate and [13 C]bicarbonate. RESULTS: In the brain, the [13 C]bicarbonate SNR was 64% higher when [1-13 C]lactate was not excited (5.8 ± 1.5 vs 3.6 ± 1.3; 1.2 to 3.3-point increase; p = 0.0027). The apparent kPB decreased 25% with [1-13 C]lactate saturation (0.0047 ± 0.0008 s-1 vs 0.0034 ± 0.0006 s-1 ; 95% confidence interval, 0.0006-0.0019 s-1 increase; p = 0.0049). These effects were not present in the kidneys, heart, or liver. Simulations suggest that the optimal [13 C]bicarbonate SNR with a TR of 1 s in the brain is obtained with [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]pyruvate flip angles of 60°, 15°, and 10°, respectively. CONCLUSIONS: Radiofrequency saturation pulses on [1-13 C]lactate limit [13 C]bicarbonate detection in the brain specifically, which could be due to shuttling of lactate from astrocytes to neurons. Our results have important implications for experimental design in studies in which [13 C]bicarbonate detection is warranted.


Assuntos
Bicarbonatos , Ácido Pirúvico , Animais , Encéfalo/diagnóstico por imagem , Isótopos de Carbono , Ácido Láctico , Imageamento por Ressonância Magnética/métodos , Ratos
18.
Magn Reson Med ; 88(3): 1391-1405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635156

RESUMO

PURPOSE: To develop a coil-based method to obtain accurate sensitivity profiles in 13 C MRI at 3T from the endogenous 23 Na. An eight-channel array is designed for 13 C MR acquisitions. As application examples, the array is used for two-fold accelerated acquisitions of both hyperpolarized 13 C metabolic imaging of pig kidneys and the human brain. METHODS: A flexible coil array was tuned optimally for 13 C at 3T (32.1 MHz), with the coil coupling coefficients matched to be nearly identical at the resonance frequency of 23 Na (33.8 MHz). This is done by enforcing a high decoupling (obtained through highly mismatched preamplifiers) and adjusting the coupling frequency response. The SNR performance is compared to reference coils. RESULTS: The measured sensitivity profiles on a phantom showed high spatial similarity for 13 C and 23 Na resonances, with average noise correlation of 9 and 11%, respectively. For acceleration factors 2, 3, and 4, the obtained maximum g-factors were 1.0, 1.1, and 2.6, respectively. The 23 Na profiles obtained in vivo could be used successfully to perform two-fold acceleration of hyperpolarized 13 C 3D acquisitions of both pig kidneys and a healthy human brain. CONCLUSION: A receive array has been developed in such a way that the 13 C sensitivity profiles could be accurately obtained from measurements at the 23 Na frequency. This technique facilitates accelerated acquisitions for hyperpolarized 13 C imaging. The SNR performance obtained at the 13 C frequency, compares well to other state-of-the-art coils for the same purpose, showing slightly better superficial and central SNR.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Suínos
19.
Tomography ; 8(2): 585-595, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314625

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate allows real-time and pathway specific clinical detection of otherwise unimageable in vivo metabolism. However, the comparability between sites and protocols is unknown. Here, we provide initial experiences on the agreement of hyperpolarized MRI between sites and protocols by repeated imaging of same healthy volunteers in Europe and the US. METHODS: Three healthy volunteers traveled for repeated multicenter brain MRI exams with hyperpolarized [1-13C]pyruvate within one year. First, multisite agreement was assessed with the same echo-planar imaging protocol at both sites. Then, this was compared to a variable resolution echo-planar imaging protocol. In total, 12 examinations were performed. Common metrics of 13C-pyruvate to 13C-lactate conversion were calculated, including the kPL, a model-based kinetic rate constant, and its model-free equivalents. Repeatability was evaluated with intraclass correlation coefficients (ICC) for absolute agreement computed using two-way random effects models. RESULTS: The mean kPL across all examinations in the multisite comparison was 0.024 ± 0.0016 s-1. The ICC of the kPL was 0.83 (p = 0.14) between sites and 0.7 (p = 0.09) between examinations of the same volunteer at any of the two sites. For the model-free metrics, the lactate Z-score had similar site-to-site ICC, while it was considerably lower for the lactate-to-pyruvate ratio. CONCLUSIONS: Estimation of metabolic conversion from hyperpolarized [1-13C]pyruvate to lactate using model-based metrics such as kPL suggests close agreement between sites and examinations in volunteers. Our initial results support harmonization of protocols, support multicenter studies, and inform their design.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Encéfalo , Isótopos de Carbono/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...